Global Search for New Physics in 2 fb⁻¹ at CDF

Si Xie

June 20, 2008

Standard Model Works Very Well

We expect something new!

Strategy Overview

- Analyze as many data events as computing ability allows
- Construct global Standard Model background prediction
- Search for discrepancies between data and standard model prediction
- Focus attention on outliers ("5σ effects") !!!

For reference the method is described in detail here: arXiv:0712.1311 accepted by Phys Rev D

Identify Objects and Select Events

Identify Physics Objects

- Select Events of Interest
 - Select events containing high-p_T objects, diobjects, multi-objects
 - Total Selection of ~4 million events

Full Tevatron Standard Model Monte Carlo Set

Dataset	Process	Weights •	Number -	Total weight						
pyth_jj_000	Pythia jj O <pt<10< td=""><td>1100</td><td>2</td><td>2113.78</td><td>- 1</td><td>ut0s2w</td><td>Alpgen W(-> tau v)+jets</td><td>0.29</td><td>5220</td><td>1534.87</td></pt<10<>	1100	2	2113.78	- 1	ut0s2w	Alpgen W(-> tau v)+jets	0.29	5220	1534.87
pyth_jj_010	Pythia jj 10 <pt<18< td=""><td>500</td><td>67</td><td>28500</td><td>i</td><td>mad_vtvt-a</td><td>MadEvent Z(->vv) gamma</td><td>0.27</td><td>138</td><td>37.48</td></pt<18<>	500	67	28500	i	mad_vtvt-a	MadEvent Z(->vv) gamma	0.27	138	37.48
pyth_pj_008	Pythia j gamma 8 <pt<12< td=""><td>87</td><td>5</td><td>434.31</td><td>i</td><td>mad_veve-a</td><td>MadEvent Z(->vv) gamma</td><td>0.27</td><td>139</td><td>37.39</td></pt<12<>	87	5	434.31	i	mad_veve-a	MadEvent Z(->vv) gamma	0.27	139	37.39
mrenna_mu+mu-	MadEvent Z(-> mu mu)	30	219	6474.94	i	we0s9t	Pythia W(-> tau v)	0.26	66004	17092.3
pyth_jj_000	Pythia 11 90 <pt<120< td=""><td>22</td><td>2035</td><td>45680.5</td><td>i</td><td>ut0swi</td><td>Alpgen W(-> tau v)+jets</td><td>0.24</td><td>27810</td><td>6632.37</td></pt<120<>	22	2035	45680.5	i	ut0swi	Alpgen W(-> tau v)+jets	0.24	27810	6632.37
pyth_pj_012	Pythia j gamma 12 <pt<22< td=""><td>21</td><td>1974</td><td>42110.7</td><td>i</td><td>pyth_pp</td><td>Pythia gamma gamma</td><td>0.23</td><td>25786</td><td>5807.24</td></pt<22<>	21	1974	42110.7	i	pyth_pp	Pythia gamma gamma	0.23	25786	5807.24
pyth_jj_018	Pythia jj 18 <pt<40< td=""><td>19</td><td>23398</td><td>450480</td><td>- 1</td><td>zeis6d</td><td>Pythia Z(->ee)</td><td>0.22</td><td>484911</td><td>106271</td></pt<40<>	19	23398	450480	- 1	zeis6d	Pythia Z(->ee)	0.22	484911	106271
mad_vtvt-j	MadEvent Z(->vv) j	16	2	31.86	1	mad_e+e-b-b	MadEvent Z(->ee) bb	0.22	1031	224.6
nad_veve-j	MadEvent Z(->vv) j	16	2	31.69	- 1	re0s28	Baur W(->ev) gamma	0.21	22076	4701.49
alpgen_eve	Alpgen W(->e v)	12	5823	68289.9	i	alpgen_evejj	Alpgen W(->e v) jj	0.21	175607	37356.5
mrenna_e+e-	MadEvent Z(->ee)	10	5974	60159.9	1	alpgen_muvnjj	Alpgen W(-> nu v) jj	0.2	112548	22156.7
alpgen_muvn	Alpgen W(-> mu v)	9.9	4483	44213.5	- 1	ztopcz	Pythia ZZ	0.19	583	109.58
pyth_jj_120	Pythia jj 120 <pt<150< td=""><td>8.3</td><td>3282</td><td>27170.8</td><td>- 1</td><td>stelzer_Zaj</td><td>stelzer_Zaj</td><td>0.18</td><td>1588</td><td>286.94</td></pt<150<>	8.3	3282	27170.8	- 1	stelzer_Zaj	stelzer_Zaj	0.18	1588	286.94
pyth_jj_060	Pythia jj 60 <pt<90< td=""><td>6.7</td><td>25299</td><td>170363</td><td>- 1</td><td>mad_majj</td><td>MadEvent jj gamma gamma</td><td>0.18</td><td>7872</td><td>1415.27</td></pt<90<>	6.7	25299	170363	- 1	mad_majj	MadEvent jj gamma gamma	0.18	7872	1415.27
nrenna_mu+mu-j	MadEvent Z(-> mu mu) j	6.6	3211	21126	- 1	mad_mu+mu-b-b	MadEvent Z(-> mu mu) bb	0.18	619	108.52
pyth_jj_040	Pythia jj 40 <pt<60< td=""><td>5</td><td>88450</td><td>438739</td><td>- 1</td><td>mad_e+e-jj</td><td>MadEvent Z(->ee) jj</td><td>0.17</td><td>773</td><td>133.82</td></pt<60<>	5	88450	438739	- 1	mad_e+e-jj	MadEvent Z(->ee) jj	0.17	773	133.82
pyth_bj_010	Pythia bj 10 <pt<18< td=""><td>3.6</td><td>167</td><td>604.26</td><td>- 1</td><td>re0s29</td><td>Baur W(-> mu v) gamma</td><td>0.17</td><td>19999</td><td>3461.88</td></pt<18<>	3.6	167	604.26	- 1	re0s29	Baur W(-> mu v) gamma	0.17	19999	3461.88
pyth_jj_200	Pythia jj 200 <pt<300< td=""><td>3.4</td><td>72998</td><td>249296</td><td>- 1</td><td>re0sia</td><td>Baur W(-> tau v) gamma</td><td>0.17</td><td>2837</td><td>468.24</td></pt<300<>	3.4	72998	249296	- 1	re0sia	Baur W(-> tau v) gamma	0.17	2837	468.24
mad_veve-a_f	MadEvent Z(->vv) gamma	3.4	13	44.23	- 1	mad_veve-j_f	MadEvent Z(->vv) j	0.16	14	2.21
ut0sw0	Alpgen W(-> tau v)+jets	3.2	649	2083.08	- 1	pyth_jj_300	Pythia jj 300 <pt<400< td=""><td>0.14</td><td>103806</td><td>14875.4</td></pt<400<>	0.14	103806	14875.4
pyth_pj_022	Pythia j gamma 22 <pt<45< td=""><td>3</td><td>31308</td><td>94944</td><td>- 1</td><td>mad_asa_f</td><td>MadEvent gamma gamma gamma</td><td>0.14</td><td>55</td><td>7.59</td></pt<45<>	3	31308	94944	- 1	mad_asa_f	MadEvent gamma gamma gamma	0.14	55	7.59
pyth_jj_150	Pythia jj 150 <pt<200< td=""><td>2.7</td><td>59222</td><td>162273</td><td>- 1</td><td>cosmic_j_hi</td><td>Cosmic (jet100)</td><td>0.12</td><td>36667</td><td>4484.23</td></pt<200<>	2.7	59222	162273	- 1	cosmic_j_hi	Cosmic (jet100)	0.12	36667	4484.23
wedsfe	Pythia W(->e v)	2.4	381176	920751	- 1	pyth_bj_040	Pythia bj 40 <pt<80< td=""><td>0.12</td><td>161606</td><td>18764.2</td></pt<80<>	0.12	161606	18764.2
cosmic_j_lo	Cosmic (jet20)	2.3	122	276.85	- 1	mrenna_e+e-jjj	MadEvent Z(->ee) jjj	0.11	23968	2661.32
cosmic_ph	Cosmic (photom_25_iso)	1.8	2700	4892.78	- 1	ze0s8t	Pythia Z(-> tau tau)	0.092	16278	1496.71
pyth_pj_080	Pythia j gamma 80 <pt< td=""><td>1.5</td><td>18464</td><td>28033.3</td><td>- 1</td><td>pyth_bj_200</td><td>Pythia bj 200<pt<300< td=""><td>0.081</td><td>252357</td><td>20555.5</td></pt<300<></td></pt<>	1.5	18464	28033.3	- 1	pyth_bj_200	Pythia bj 200 <pt<300< td=""><td>0.081</td><td>252357</td><td>20555.5</td></pt<300<>	0.081	252357	20555.5
mrenna_e+e-j	MadEvent Z(->ee) j	1.4	28137	40761	- 1	hewk03	MadEvent Z(->ee) gamma	0.081	70511	5713.41
pyth_pj_045	Pythia j gamma 45 <pt<80< td=""><td>1.4</td><td>83370</td><td>117889</td><td>- 1</td><td>mad_ass</td><td>MadEvent gamma gamma gamma</td><td>0.079</td><td>72</td><td>5.69</td></pt<80<>	1.4	83370	117889	- 1	mad_ass	MadEvent gamma gamma gamma	0.079	72	5.69
mrenna_mu+mu-jj	MadEvent Z(-> mu mu) jj	1.3	4150	5503.82		HI0sen	Pythia Z(-> mu mu) (m_Z<20)	0.075	30	2.26
pyth_bj_018	Pythia bj 18 <pt<40< td=""><td>1.1</td><td>16076</td><td>18233.3</td><td>!</td><td>wenubb0p</td><td>Alpgen W(->e v) bb</td><td>0.075</td><td>41332</td><td>3096.21</td></pt<40<>	1.1	16076	18233.3	!	wenubb0p	Alpgen W(->e v) bb	0.075	41332	3096.21
E2d_e+e-	MadEvent Z(->ee)	1	522	542.22	- 1	wmnubbOp	Alpgen W(-> mu v) bb	0.075	25998	1946.94
stelzer_l+l-j	stelzer_l+l-j	0.92	665	611.86		IIOsee	Pythia $Z(->ee)$ (n_ $Z<20$)	0.074	79	5.85
mrenna_e+e-jj	MadEvent Z(->ee) jj	0.91	11292	10317.9		overlay	Overlaid events	0.073	11443	837.38
nad_mu+mu-	MadEvent Z(-> mu mu)	0.88	83	73.28		wenubbip	Alpgen W(->e v) bb j	0.072	14076	1018.56
pyth_bj_060	Pythia bj 60 <pt<90< td=""><td>0.87</td><td>10711</td><td>9307.8</td><td>!</td><td>wmnubbip</td><td>Alpgen W(-> mu v) bb j</td><td>0.072</td><td>8420</td><td>608.96</td></pt<90<>	0.87	10711	9307.8	!	wmnubbip	Alpgen W(-> mu v) bb j	0.072	8420	608.96
mad_vtvt-a_f	MadEvent Z(->vv) gamma	0.85	38	32.2	!	hevk04	MadEvent Z(-> mu mu) gamma	0.072	2034	145.66
pyth_bj_090	Pythia bj 90 <pt<120< td=""><td>0.83</td><td>2385</td><td>1985.66</td><td>!</td><td>pyth_jj_400</td><td>Pythia jj 400 cpT</td><td>0.068</td><td>13106</td><td>890.33</td></pt<120<>	0.83	2385	1985.66	!	pyth_jj_400	Pythia jj 400 cpT	0.068	13106	890.33
mad_vtvt-j_f	MadEvent Z(->vv) j	0.71	7	4.94	!	alpgen_evejjj	Alpgen W(->e v) jjj	0.068	92558	6259.88
stelzer_Waj	MadEvent W(->1 v)j gamma	0.68	1644	1125.1	!	alpgen_muvnjjj	Alpgen W(-> mu v) jjj	0.066	55644	3689.5
pyth_bj_120	Pythia bj 120 <pt<150< td=""><td>0.67</td><td>2854</td><td>1904.7</td><td>!</td><td>ttopOz</td><td>Herwig ttber</td><td>0.065</td><td>30649</td><td>1982.71</td></pt<150<>	0.67	2854	1904.7	!	ttopOz	Herwig ttber	0.065	30649	1982.71
mad_maj	MadEvent j gamma gamma	0.51	563	287.44	!	ze0sat	Pythia Z(-> tau tau)	0.063	23833	1512.59
ve0s8a	Pythia W(-> mu v)	0.49	1.29089+06	630854	!	ut0s3w	Alpgen W(-> tau v)+jets	0.063	4470	282.34
pyth_bj_150	Pythia bj 150 <pt<200< td=""><td>0.44</td><td>28229</td><td>12531.9</td><td>!</td><td>wmnubb2p</td><td>Alpgen W(-> mu v) bb jj</td><td>0.064</td><td>3508</td><td>188.94</td></pt<200<>	0.44	28229	12531.9	!	wmnubb2p	Alpgen W(-> mu v) bb jj	0.064	3508	188.94
mrenna_mu+mu-jjj	MadEvent Z(-> mu mu) jjj	0.44	3448	1500.61	!	wenubb2p	Alpgen W(->e v) bb jj	0.064	6044	323.72
nad_e+e-j	MadEvent Z(->ee) j	0.39	733	285.76	!	we0scd	Pythia WZ	0.063	2910	154.95
alpgen_evej	Alpgen W(->e v) j	0.35	398712	140567	!	we0sgd	Pythia W	0.048	2553	122.77
we0sat	Pythia W(-> tau v)	0.35	49498	17125.5	!	we0sbd	Pythia W	0.048	2843	136.03
nad_mu+mu-j	MadEvent Z(-> mu mu) j	0.34	495	166.31	!	alpgen_evejjjj	Alpgen W(->e v) jjjj	0.027	41589	1118.82
nad_mu+mu-jj	MadEvent Z(-> mu mu) jj	0.32	1682	531.82	!	alpgen_muvmjjjj	Alpgen W(-> nu v) jjjj	0.024	26964	659.93
zeis9m	Pythia Z(-> mu mu)	0.3	371008	110522	!	ut0s4w	Alpgen W(-> tau v)+jets	0.023	2488	57.06
alpgen_muvnj	Alpgen W(-> mu v) j	0.3	281049	83604.3	- 1	Total:				4.376839+06

Simulate detector response

Correction Model

- Attempts to accurately reflect the limit to our systematic understanding of the detector and the standard model
- Correction factors include: integrated luminosity, k-factors, trigger efficiencies, reconstruction efficiencies, fake rates
- Values are obtained by a global fit of data to background yielding a set of values maximizing global agreement

Partition Events into exclusive final states

399 Final State Populations

CDF Run II Preliminary (2.0 fb⁻¹) The calculation of σ accounts for the trials factor

Final State	Data	Background
be [±] ø	690	817.7 ± 9.2
~~±	1371	1217.6 ± 13.3
μ^{\pm}_{τ}	63	35.2 ± 2.8
b2j p high- Σp_T	255	327.2 ± 8.9
$2j\tau^{\pm}$ low- Σp_T	574	670.3 ± 8.6
$3j\tau^{\pm}$ low- Σp_T	148	199.8 ± 5.2
$e^{\pm}p_{\tau}^{\pm}$	36	17.2 ± 1.7
$_{2j\tau}\pm_{\tau}\mp$	33	62.1 ± 4.3
e^{\pm} j	741710	764832 ± 6447.
$j_{2\tau}^{\pm}$	105	150.8 ± 6.3
$e^{\pm 2i}$	256946	249148 ± 2201.
2 bj low- Σp_T	279	352.5 ± 11.9
$j\tau^{\pm}$ low- Σp_T	1385	1525.8 ± 15
2b2j low- Σp_T	108	153.5 ± 6.8
bμ [±] ø	528	613.5 ± 8.7
$\mu^{\pm}\gamma p$	523	611 ± 12.1
$2b\gamma$	108	70.5 ± 7.9
8j	14	13.1 ± 4.4
7j	103	97.8 ± 12.2
6j	653	659.7 ± 37.3
5j	3157	3178.7 ± 67.1
4j high- Σp_T	88546 14872	89096.6 ± 935.2
$4j low-\Sigma p_T$	46	14809.6 ± 186.3 46.4 ± 3.9
$4j2\gamma$ $4j\tau^{\pm}$ high- Σp_T	29	26.6 ± 1.7
$4j\tau = \underset{\text{low-}\Sigma p_T}{\text{low-}\Sigma p_T}$	43	63.1 ± 3.3
$4j\tau$ flow- Σp_T $4jp$ high- Σp_T	1064	1012 ± 62.9
$_{4\mathrm{j}\gamma\tau}^{\mathrm{4j}}$	19	10.8 ± 2
4jγ p	62	104.2 ± 22.4
4i~	7962	8271.2 ± 245.1
$4j\mu^{\pm}p$	574	590.5 ± 13.6
$_{4j\mu}\pm_{\mu}\mp$	38	48.4 ± 6.2
$_{4\mathrm{j}\mu}^{\pm}$	1363	1350.1 ± 37.7
$_{3\mathrm{j}}^{-1}$ high- Σp_{T}	159926	$159143 \pm 1061.$
3j low- Σp_T	62681	64213.1 ± 496
$3i2\gamma$	151	177.5 ± 7.1
$3j\tau^{\pm}$ high- Σp_T	68	76.9 ± 3
$3jp high-\Sigma p_T$	1706	1899.4 ± 77.6
$3jp low-\Sigma p_T$	42	36.2 ± 5.7
$3j\gamma\tau^{\pm}$	39	37.8 ± 3.6
$3j\gamma p$	204 24639	249.8 ± 24.4 24899.4 ± 372.4
$3j\gamma \ 3j\mu^{\pm}p$	2884	2971.5 ± 52.1
$3j\mu - p$ $3j\mu \pm \gamma p$		
$3j\mu - \gamma p$ $3j\mu \pm \gamma$	10	3.6 ± 1.9
$3j\mu \pm \gamma$ $3j\mu \pm \mu \mp$	15	7.9 ± 2.9
$3j\mu + \mu$	175	177.8 ± 16.2
$3j\mu^{\pm}$ $3b2j$	5032 23	4989.5 ± 108.9 28.9 ± 4.7
3bj	82 82	82.6 ± 5.7
3b	67	85.6 ± 7.7
$2\tau^{\pm}$	498	512.7 ± 14.2
$2\gamma p$	128	107.2 ± 6.9
2γ	5548	5562.8 ± 40.5
$2j$ high- Σp_T	190773	190842 ± 781.2
2j low- Σp_T	165984	162530 ± 1581
$_{2\mathrm{j}2 au^{\pm}}$	22	40.6 ± 3.2
$2j2\gamma p$	11	8 ± 2.4
$_{2\mathrm{j}2\gamma}$	580	581 ± 13.7
$2\mathrm{j} au^\pm$ high- Σp_T	96	114.6 ± 3.3

		//	//-
Final State	Data	Backgro	und
$2jp high-\Sigma p_T$	87	80.9 ±	
$2i\pi low - \Sigma n\pi$	114		100.8
2jp/τ±	18	13.2 ±	2.2
$2j\gamma \tau^{\pm}$	142	144.6 ±	
$2j\gamma p$	908		63.7
2i~	71364	73021.4 ±	
$_{2\mathrm{j}\mu^{\pm}\tau^{\mp}}$	16	19.3 ±	2.2
2iu± n∕o	17927	18340.6 ±	
$2i\mu^{\pm}\gamma\phi$	31	$27.7~\pm$	
$2j\mu^{\pm}\gamma$	57	58.2 ±	
$2j\mu^{\pm}\mu^{\mp}p$	11	7.8 ±	
$_{2j\mu}^{2j\mu}\pm_{\mu}^{\mu}\mp$	956	924.9 ±	
2;,,±	22461	23111.4 ±	
2e±j_	14	13.8 ±	
$\frac{1}{2e} \pm \frac{1}{e} \mp$	20	17.5 ±	
2e ±	32	49.2 ±	
$2e^-$ 2b high- Σp_T	666	689 ±	
$2b \log \Sigma p_T$ $2b \log \Sigma p_T$	323	313.2 ±	
2b3i low-Σp _T	53	57.4 ±	
2b3j low- Σp_T 2b2j high- Σp_T	718		12.7
$2b2jp high-\Sigma p_T$	15	21.8 ±	
$2b2j\gamma$	32	39.7 ±	
$2b2j\mu^{\pm}p$	14	$17.3 \pm$	
2b2iu±	22	21.8 ±	
2b2jμ [±] 2bμ [±] p	11	14.4 ±	
2bj high- Σp_T	891		13.2
$2 \text{bjp high-} \Sigma p_T$	25		3.1
2bjy	71	54.5 ±	7.1
2bjμ± ≠	12	$10.7 \pm$	1.9
$2be^{\pm}2jp$	30	27.3 ± 3	2.2
2be±2j	72	66.5 ±	2.9
$2be^{\pm}\phi$	22	19.1 ±	
2he±in	19	19.4 ±	
2be [±] j	63	63 ±	
2be±	96	92.1 ±	
$\tau^{\pm}\tau^{\mp}$	856	872.5 ±	
~ 16	3793	3770.7 ±	
μ^{\pm}_{τ}	381	440.9 ±	
$\mu^{\pm} p_{\tau} \mp$	60	75.7 ±	
$\mu^{\pm} p_{\tau}^{\mu}$	15	12 ±	
$\mu \pm p$	734290	734296 ±	
$\mu \pm \gamma$	475	469.8 ±	
$\mu^{\pm}_{\mu} \pm \mu^{\mp}_{\mu}$	169	198.5 ±	
$\mu - \mu + p$			
$\mu \pm \mu \mp \gamma \mu \pm \mu \mp \gamma \mu \pm \mu \mp$	83	60 ±	
$\mu^{+}\mu^{+}$	25283		86.5
j2γ ⊅ j2γ	$\frac{36}{1822}$	$30.4 \pm 1813.2 \pm 181$	
$j\tau^{\pm}$ high- Σp_T	52	56.2 ±	
j_{τ} - mgn - Σp_T j_{τ} + τ			
$jp high-\Sigma p_T$	$\frac{203}{4432}$	252.2 ± 3	45.2
$p \operatorname{high-2} p_T$			
$j\gamma \tau^{\pm}$	526 1882	476 ± 1	$9.3 \\ 72.3$
jγ p i~	103319	102124 ±	
$_{\mathrm{j}\mu^{\pm}\tau^{\mp}}^{\mathrm{j}\gamma}$	71	98 ±	
$j\mu - \tau$ $j\mu \pm \tau \pm$	15		
$j\mu \pm \tau \mp j\mu \pm p \tau \mp$		12 ± 1	
$j\mu + p\tau$ $j\mu + p$	26	30.8 ±	
$\lim_{t\to 0} p$	109081	108323 ±	
$j\mu^{\pm}\gamma p$	171	171.1 ±	
1/L - ~	152	190 + 3	2 U 2

Final State	Data	Background
jμ±μ∓ p	32	32.2 ± 10.9
$j\mu \pm \mu \mp \gamma$	14	11.5 ± 2.6
$j_{\mu}^{\mu}\pm_{\mu}^{\mu}\mp$	4852	4271.2 ± 185.4
j_{μ}^{\prime} ±	77689	76987.5 ± 930.2
$e^{\pm}4\mathrm{i}$	903	830.6 ± 13.2
$e^{\pm}4\mathrm{j}\gamma$	25	29.2 ± 3.6
$e^{\pm}4\mathrm{j}$	15750	16740.4 ± 390.5
$e^{\pm}3j\tau^{\mp}$	15	21.1 ± 2.2
$e^{\pm}3\mathrm{j}p$	4054	4077.2 ± 63.6
$e^{\pm}3\mathrm{j}\gamma$	108	79.3 ± 5
$e^{\pm}3\mathrm{j}$	60725	60409.3 ± 723.3
$e^{\pm}2\gamma$	41	34.2 ± 2.6
$e^{\pm}_{2j\tau}$	37	47.2 ± 2.2
$e^{\pm}2\mathrm{j} au^{\mp}$	109	95.9 ± 6.8
$e^{\pm 2jp}$	25725	25403.1 ± 209.4
$e^{\pm}2\mathrm{j}\gamma p$	30	31.8 ± 4.8
$e^{\pm}2j\gamma$	398	342.8 ± 15.7
$e^{\pm}2i\mu^{\mp}\phi$	22	14.8 ± 1.9
$e^{\pm}2j\mu$	23	15.8 ± 2
$e^{\pm 2j\mu}_{e^{\pm }\tau^{\pm}}$	437	387 ± 5.3
$e^{\pm} au^{\mp}$	1333	1266 ± 12.3
$e^{\pm}p_{\tau}$	109	106.1 ± 2.7
$e^{\pm}p$	960826	956579 ± 3077 .
$e^{\pm}\gamma p$	497	496.8 ± 10.3
$e^{\pm}\gamma$	3578	3589.9 ± 24.1
$e^{\pm}u^{\pm}\phi$	31	29.9 ± 1.6
$e^{\pm}\mu^{\mp}p$	109	99.4 ± 2.4
$e^{\pm}\mu^{\pm}$	45	28.5 ± 1.8
$e^{\pm}\mu^{\mp}$	350	313 ± 5.4
e^{\pm} j 2γ	13	16.1 ± 3.9
$e^{\pm}i\tau^{\mp}$	386	418 ± 18.9
e^{\pm} j τ^{\pm}	160	162.8 ± 3.5
$e^{\pm}ip \tau^{\mp}$	48	44.6 ± 3.3
$e^{\pm jp\tau^{\pm}}$	11	8.3 ± 1.5
e [±] in∕	121431	121023 ± 747.6
$e^{\pm}i\gamma p$	159	192.6 ± 10.9
$e^{\pm}i\gamma$	1389	1368.9 ± 38.9
$e^{\pm}i\mu^{\mp}\phi$	42	33 ± 2.9
e±jμ±ø	16	9.2 ± 1.9
$e^{\pm}i\mu^{+}$	62	63.8 ± 3.2
$e^{\pm}j_{\mu}^{\pm}$ $e^{\pm}e^{\mp}4j$	13	8.2 ± 2
$e^{\pm}e^{\mp}4j$	148	159.1 ± 7
$e^{\pm}e^{\mp}3j$	717	743.6 ± 24.4
$e^{\pm}e^{\mp}2\mathrm{j}p$	32	41.4 ± 5.6
$e^{\pm}e^{\mp}2\mathrm{j}\gamma$	10	11.4 ± 2.9
$e^{\pm}e^{\mp}2\mathrm{j}$	3638	3566.8 ± 72
$e^{\pm}e^{\mp}\tau^{\pm}$	18	16.1 ± 1.7
$e^{\pm}e^{\mp}p$	822	831.8 ± 13.6
$e^{\pm}e^{\mp}\gamma$	191	221.9 ± 5.1
e [±] e [∓] j¢	155	170.8 ± 12.4
$e^{\pm}e^{\mp}i\gamma$	48	45 ± 3.9
e±e∓j e±e∓	17903	18258.2 ± 204.4
$e^{\pm}e^{\mp}$	98901	99086.9 ± 147.8
b6j	51	42.3 ± 3.8
b5j	237	192.5 ± 7.1
b4j high- Σp_T	26	23.4 ± 2.6
b4j low- Σp_T b3j high- Σp_T	836	821.7 ± 15.9
b3j high- Σp_T b3j low- Σp_T	$\frac{12081}{2974}$	12071 ± 84.1 2873 ± 31
JJ IOW-ZIPT	2014	2010 I 01

19650 Kinematic Distributions

Bump Hunter: 5036 Mass variables

- Search for resonant production of new particles
- Look for narrow resonances in mass distributions.
- (width = detector resolution)
- Require quality criteria to eliminate erroneous bumps

Sleuth Final States: 87

Sleuth variable:

$$\sum p_T \equiv \sum_i |\vec{p_i}| + \left| \overrightarrow{\mathrm{uncl}} \right| + \left| \overrightarrow{p} \right|,$$

- Scan the ΣP_T spectrum
- Look for semi-infinite region with the most significant excess of data
- Excesses at Large ΣP_T

 are expected by a wide spectrum of new physics scenarios.

Overview Schematic

Final State Populations

List of Top Population Discrepancies

CDF Run II Preliminary (2.0 fb⁻¹) The calculation of σ accounts for the trials factor

D. 10	ъ.	
Final State	Data	Background σ
be [±] p∕	690	$817.7 \pm 9.2 -2.7$
γau^{\pm}	1371	$1217.6 \pm 13.3 + 2.2$
$\mu^{\pm}\tau^{\pm}$	63	$35.2 \pm 2.8 + 1.7$
b2j p high- Σp_T	255	$327.2 \pm 8.9 -1.7$
$2\mathrm{j} au^{\pm}$ low- Σp_T	574	$670.3 \pm 8.6 -1.5$
$3j\tau^{\pm}$ low- Σp_T	148	199.8 ± 5.2 -1.4
$e^{\pm}p_{\tau}^{\pm}$	36	$17.2 \pm 1.7 + 1.4$
$_{2\mathrm{j} au^{\pm} au^{\mp}}$	33	$62.1 \pm 4.3 -1.3$
e [±] j	741710	$764832 \pm 6447.2 -1.3$
$\mathrm{j}_{2 au^{\pm}}$	105	150.8 ± 6.3 -1.2
$e^{\pm}2\mathrm{j}$	256946	$249148 \pm 2201.5 + 1.2$
2bj low- Σp_T	279	$352.5 \pm 11.9 -1.1$
$\mathrm{j} au^\pm$ low- Σp_T	1385	1525.8 ± 15 -1.1
2b2j low- Σp_T	108	$153.5 \pm 6.8 -1$
b <i>μ</i> ± ⁄⁄p	528	$613.5 \pm 8.7 -0.9$
$\mu^{\pm}\gamma p$	523	$611 \pm 12.1 -0.8$
$2b\gamma$	108	$70.5 \pm 7.9 +0.1$
8j	14	$13.1 \pm 4.4 0$
7j	103	$97.8 \pm 12.2 0$
6j	653	$659.7 \pm 37.3 0$
5j	3157	$3178.7 \pm 67.1 0$

No Significant Discrepancy in Populations!

Kinematic Shapes

This analysis brought this issue ("3 jet effect") to attention and is currently being investigated by experimental and theoretical colleagues.

This is a major limiting factor in our ability to resolve mass resonances in multijet final states.

3 jet effect

Conclusion: No discrepancies to motivate a new physics claim

Summary of Mass Bumps

The outlier

4.1 sigma bump after trials factor

No new physics interpretation. "3-jet" effect again!!!

Sleuth Results

Sleuth Results Summary

CDF Run II Preliminary (2.0 fb⁻¹) SLEUTH Final State \mathcal{P}

$\ell^+\ell'^+$	0.00055
$\ell^+\ell'^+ pjj$	0.0021
$\ell^+\ell'^+\not\!p$	0.0042
$\ell^+\ell^-\ell'p$	0.0047
$\ell^+ au^+$ p	0.0065

The most discrepant Sleuth final state has a probability of 8% after accounting for trials factor

Conclusion

- Completed the global search for new physics in 2fb⁻¹ at CDF
- This search represents one of the most encompassing tests of the Standard Model at the energy frontier.
- This analysis finds...
 - No significant final state population discrepancies.
 - No shape discrepancies motivating new physics
 - No bumps motivating new physics
 - No statistically significant Sleuth Σp_¬ excess.
- The search continues...

BACKUP

A few example distributions

From Most significant deficit

From Most significant excess

Some typical distributions that constrain correction factors

Sensitivity: Top Discovery?

Remove top quark from Standard Model, refit correction factors, search!

Easily finding top in 1 fb⁻¹

Approximate Luminosity Needed ~ O (Run1 Discovery)

Sensitivity: Z' mass bump?

 Z'_{250} → charged leptons 5 σ discovery if σ ×BR \approx 0.325 pb.

Global Fit

$$\chi^2(\vec{s}) = \left(\sum_{k \in \text{bins}} \chi_k^2(\vec{s})\right) + \chi_{\text{constraints}}^2(\vec{s})$$

$$\chi_k^2(\vec{s}) = \frac{(\text{Data}[k] - \text{SM}[k])^2}{\delta \text{SM}[k]^2 + \sqrt{\text{SM}[k]}^2}$$

Correction Factors

Code	Category	Explanation	Value	Error	Error(
0001	luminosity	CDF integrated luminosity	1990	50	2.6
0002	k-factor	cosmic_ph	0.81	0.05	6.1
0003	k-factor	cosmic_j	0.192	0.006	3.1
0004	k-factor	$1\gamma1j$ photon+jet(s)	0.91	0.04	4.4
0005	k-factor	$1\gamma 2j$	1.27	0.05	3.9
0006	k-factor	1γ 3j	1.58	0.08	5.1
0007	k-factor	$1\gamma 4j+$	1.99	0.16	8.1
0008	k-factor	2γ 0j diphoton(+jets)	1.64	0.08	4.9
0009	k-factor	$2\gamma 1j$	2.96	0.17	5.7
0010	k-factor	$2\gamma 2j+$	1.2	0.09	7.5
0011	k-factor	W0j W (+jets)	1.37	0.03	2.3
0012	k-factor	W1j	1.32	0.03	2.3
0013	k-factor	W2j	2	0.05	2.5
0014	k-factor	W3j+	2.08	0.09	4.3
0015	k-factor	Z0j Z (+jets)	1.391	0.028	2.0
0016	k-factor	Z1j	1.23	0.04	3.2
0017	k-factor	Z2j+	1.02	0.04	3.9
0018	k-factor	2j \hat{p}_T <150 dijet	1.005	0.027	2.7
0019	k-factor	$2j\ 150 < \hat{p}_T$	1.34	0.03	2.2
0020	k-factor	$3j \hat{p}_T < 150 \text{ multijet}$	0.945	0.025	2.6
0021	k-factor	3j 150 $<\hat{p}_T$	1.48	0.04	2.7
0022	k-factor	4j $\hat{p}_T < 150$	1.06	0.03	2.8
0023	k-factor	4j 150 $<\hat{p}_T$	1.93	0.06	3.1
0024	k-factor	5j low	1.34	0.05	3.7
0025	k-factor	1b2j 150 $<\hat{p}_T$	2.24	0.11	4.9
0026	k-factor	1b3j 150 $<\hat{p}_T$	3.06	0.15	4.9
0027	misId	p(e→e) central	0.978	0.006	0.6
0028	misId	p(e→e) plug	0.965	0.007	0.7
0029	misId	$P(\mu \rightarrow \mu)$ CMUP+CMX	0.888	0.007	0.8
0030	misId	$p(\gamma \rightarrow \gamma)$ central	0.936	0.018	1.9
0031	misId	$p(\gamma \rightarrow \gamma)$ plug	0.86	0.016	1.9
0032	misId	p(b→b) central	0.971	0.021	2.2
0033	misId	$p(\gamma \rightarrow e)$ plug	0.06	0.003	5.0
0034	misId	$p(q\rightarrow e)$ central	7.07×10^{-5}		2.7
0035	misId	p(q→e) plug	0.000785	1.2×10^{-5}	1.5
0036	misId	$p(q\rightarrow \mu)$	1.22×10^{-5}		4.9
0037	misId	$p(b\rightarrow \mu)$	3.2×10^{-5}	1.1×10^{-5}	34.0
0038	misId	$p(j\rightarrow b)$ 25 $< p_T$	0.0183	0.0002	1.1
0039	misId	$p(q\rightarrow \tau)$	0.0053	0.0001	1.9
0040	misId	$p(q\rightarrow \gamma)$ central	0.000269	1.4×10^{-5}	5.2
0041	misId	p(q→γ) plug	0.00048	6×10^{-5}	12.4
0042	trigger	$p(e \rightarrow trig)$ plug, $p_T > 25$	0.838	0.007	0.8
0043	trigger	p(μ \rightarrow trig) CMUP+CMX, $p_T>25$	0.92	0.004	0.4

Sleuth Algorithm

Sleuth variable:

$$\sum p_T \equiv \sum_i |\vec{p_i}| + \left| \overrightarrow{\text{uncl}} \right| + \left| \overrightarrow{p} \right|,$$

- Scan the sumPt spectrum in all final states and find the region with the most significant excess of data over SM.
- Perform pseudo-experiments to determine the probability that a statistical fluctuation of the background would yield an excess as significant as the one observed
- Takes into account the trials factor for looking at many places
- Discovery level significance set at $0.001 = 5\sigma$ effect

Method

Scan all mass spectra with a window.

Window size follows mass resolution.

$$m = \sqrt{\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} p_{i}\right)^{2}} \Rightarrow \Delta m$$

- Consider bumps with ≥ 5 data events.
 Sidebands have to agree more than center, and not be too discrepant (5σ).

Statistical Significance

Each bump has a p-value

$$\sum_{n=d}^{\infty} \frac{b^n}{n!} e^{-t}$$

Most interesting bump: p-val_{min}

Use pseudo-data to find
= The probability that a p-val ≤ p-val_{min}
would appear by coincidence.

Discovery threshold:
$$P_{b} = 3\sigma \leftrightarrow P_{a} = 5\sigma$$

Fast vs Slow method to estimate P

Expected P_a

The need for spike treatment

Potential for Improvement

- Search for wider resonances
- Combine leptons & jet multiplicities
- Dynamic optimization of window width
- Use of only data